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Abstract— To better understand early brain development
in health and disorder, it is critical to accurately segment
infant brain magnetic resonance (MR) images into white
matter (WM), gray matter (GM), and cerebrospinal fluid
(CSF). Deep learning-based methods have achieved state-
of-the-art performance; h owever, one of the major limita-
tions is that the learning-based methods may suffer from
the multi-site issue, that is, the models trained on a dataset
from one site may not be applicable to the datasets acquired
from other sites with different imaging protocols/scanners.
To promote methodological development in the commu-
nity, the iSeg-2019 challenge (http://iseg2019.web.unc.edu)
provides a set of 6-month infant subjects from multiple
sites with different protocols/scanners for the participating
methods. T raining/validation subjects are from UNC (MAP)
and testing subjects are from UNC/UMN (BCP), Stanford
University, and Emory University. By the time of writing,
there are 30 automatic segmentation methods participated
in the iSeg-2019. In this article, 8 top-ranked methods were
reviewed by detailing their pipelines/implementations, pre-
senting experimental results, and evaluating performance
across different sites in terms of whole brain, regions of
interest, and gyral landmark curves. We further pointed out
their limitations and possible directions for addressing the
multi-site issue. We find that multi-site consistency is still an
open issue. We hope that the multi-site dataset in the iSeg-
2019 and this review article will attract more researchers
to address the challenging and critical multi-site issue in
practice.

Index Terms—Infant brain segmentation, isointense
phase, low tissue contrast, multi-site issue, domain adap-
tation, deep learning.
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|. INTRODUCTION

EGMENTING infant brain images into different tissues,
Se.g., white matter (WM), gray matter (GM), and cere-
brospinal fluid (CSF), is a vital step in the study of early brain
development. Compared with adult brain images, infant brain
images exhibit low tissue contrast, creating challenging tasks
for tissue segmentation [1]. Therefore, existing tools developed
for adult brains, e.g., SPM [2], CIVET [3], BrainSuite [4],
FSL [5], FreeSurfer [6], and HCP pipeline [7], often perform
poorly on the infant brain images. In fact, due to the inherent
ongoing brain myelination and maturation [8]-[10], there
are three distinct phases in the first-year brain MRIs [11],
including (1) infantile phase (<4 months), (2) isointense phase
(5-8 months), and (3) early adult-like phase (=9 months).
Compared with the infantile and early adult phases, infant
subjects in the isointense phase (e.g., 6 months old) exhibit the
extremely low tissue contrast, resulting in the great challenge
in tissue segmentation. Currently, available infant brain MRI
processing pipelines, e.g., dHCP minimal pipeline [12] and
Infant FreeSurfer [13], only focus on the infantile phase or
early adult phase. To the best of our knowledge, there are very
few works that can handle the isointense phase, e.g., iBEAT
V2.0 Cloud (http://www.ibeat.cloud). To draw researchers’
attention to the segmentation of isointense infant brain MRI,
we organized a MICCAI grand challenge on 6-month-old
infant brain MRI segmentation from a single site: the iSeg-
2017, http://iseg2017.web.unc.edu/. In the iSeg-2017 [1], we
found that deep learning-based methods have shown their
promising performance on 6-month-old infant subjects from a
single site. However, data from multiple sites poses a number
of challenges for the learning-based segmentation methods.
Generally, the trained model may handle the testing subjects
from the same site as the training subjects very well. However,
the model often performs poorly on testing subjects from other
sites with different imaging protocols/scanners, which is called
the multi-site issue. Factors include equipment manufacturer,
magnetic field strength, and acquisition protocol, which can
affect image contrast/pattern and intensity distribution. One
example is shown in Fig. | that learning-based methods
achieve high accuracy on the validation subjects that are
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Fig. 1. Dice values from the 8 top-ranked methods on the validation and
testing datasets in the iSeg-2019 challenge (the higher the DICE, the
better the accuracy). Due to the multi-site issue, learning-based models
often perform well on the validation subjects from the same site with the
training subjects, whereas perform poorly on the testing subjects from
other sites with different imaging protocols/scanners.

from the same site as the training subjects. Unfortunately,
when the testing subjects are from other sites with different
protocols/scanners (Table I), there is a significant decrease
in performance in terms of Dice coefficient (DICE) metric
(WM: from 0.90 to 0.86; GM: from 0.92 to 0.82; CSF: from
0.92 to 0.83). The multi-site issue hinders the popularity and
practicability of learning-based methods. Currently, there are
few challenges have been organized to explore this issue,
(e.g., PROMISEI12 [14], and M&Ms challenge [15]), and
researchers proposed few-shot learning [16], domain adapta-
tion [17], [18], transfer or distributed transfer learning [19],
and adversarial learning [20], to deal with the multi-site issue.
These existing methods still require either a small number of
manual labels (annotations) from other sites for fine-tuning
or a large number of images from other sites for adaptation.
However, the annotation from other sites is prohibitively time-
consuming and expensive, and usually only a small number of
images are acquired in a pilot study before real-world medical
applications are carried out.

To attract more researchers to address the multi-site issue,
in 2019, we organized a MICCALI grand challenge on 6-month
infant brain MRI segmentation from multiple sites: iSeg-2019,
http://iseg2019.web.unc.edu. Although a naive way is to train
models based on multiple sites with different imaging pro-
tocols/scanners, the combinations of protocols/scanners are
infinite. There is no way to include every possible case.
Therefore, the goal of the iSeg-2019 is to promote training
models based on one site to fit for all sites. Note that the
iSeg-2019 is a follow-up challenge of the iSeg-2017 [1] in
which the training and testing subjects are from the same
site. In the iSeg-2019, the training subjects are randomly
chosen from Multi-visit Advanced Pediatric (MAP) Brain
Imaging Study [21] and the testing subjects are from three
sites: University of North Carolina at Chapel Hill/University
of Minnesota (Baby Connectome Project, BCP), Stanford
University, and Emory University. It is worth noting that
the imaging parameters/scanners from the three testing sites
are different from the training dataset, with their imaging
protocols/scanners listed in Table I. At the time of writing
this paper, 30 teams have submitted their segmentation results

to the iSeg-2019 website. In the next section, we introduce
the cohort employed for this challenge. In Section III, we
introduce 8 top-ranked methods in detail. Section IV and V
elaborate on the performance, limitations and possible future
directions, and Section VI concludes the challenge.

Il. MULTI-SITE DATASETS

Since the iSeg-2019 challenge aims to promote automatic
segmentation algorithms on infant brain MRI from multiple
sites, we select MR images from four different sites as
training, validation, and testing datasets, respectively. Note
that the training images and validation images are from the
same site. To maximally alleviate bias effects caused by non-
algorithmic factors, we employed the same selection criteria
and the same preprocessing. Specifically, all subjects were
randomly selected from normally developed infants without
any pathology, and all scans were acquired at an average
age of 6.0 (£0.8) months. Then, the same standard imaging
preprocessing steps were performed, including resampling
the resolution of all images into 1.0 x 1.0x1.0 mm?>, skull
stripping [22], intensity inhomogeneity correction [23], and
removal of the cerebellum and brain stem. Finally, each
preprocessed image was examined, and errors of skull strip-
ping/removal of cerebellum/brain stem were manually cor-
rected by experts (Dr. Li Wang and Dr. Valerie Jewells), which
took us 2~3 minutes for each subject.

For training and validation, MR scans were chosen from
MAP Brain Imaging Study. For testing, MR scans were
randomly chosen from three sites, i.e., UNC/UMN (BCP),
Stanford University, and Emory University. Detailed imaging
protocols and scanners about datasets are listed in Table I.
Specifically, the number of subjects from the MAP is 23, and
the number of subjects from BCP, Stanford University, and
Emory University is 6, 5, and 5, respectively. The reason
for the different numbers from different sites is that more
subjects have been collected in the MAP while fewer subjects
are available from the testing sites, before kicking off the
iSeg-2019. Therefore, for the MAP, we have enough time to
perform manual annotations and more subjects were selected
from the MAP. For the testing sites, both the number of
available subjects and time for manual annotations are lim-
ited, and thus relatively fewer subjects were selected. All
sites utilized Siemens scanners except for Stanford University
which utilized a GE scanner. Furthermore, Fig. 2(a) shows
T1w images, T2w images and manual segmentations of WM,
GM, and CSF of 6-month infant subjects from four sites,
and Fig. 2(b) plots average intensity distributions of T1w and
T2w images from four sites. There are large differences in
the intensity distributions and histogram shapes for the T1w
images from Stanford University, compared to the other sites.
These differences cause significant challenges for learning-
based methods.

Reliable manual segmentations were generated for train-
ing and quantitative comparisons. For all training subjects
(with follow-up scans), a longitudinal guided segmentation
algorithm [24] was applied to generate an initial segmenta-
tion. For all validation/testing subjects, due to the unavail-
ability of follow-up scans, we used an anatomy-guided
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TABLE |
DATASET INFORMATION OF THE ISEG-2019 CHALLENGE. F: FEMALE; M: MALE
Number of Number of
Site Scanner |Modality| TR/TE (ms) | Head Coil | Resolution (mm?) . Subjects with
Subjects
Follow-up
Training . Tlw 1900/4.4 1.0x1.0x1.0 10 (5F/5M) 10
Validation UNC(MAP) - |Siemens (3T 7 7350/119 125x125x1.95 | 13 (7E/6M) 0
. Tlw 2400/2.2 0.8x0.8x0.8
UNC/UMN (BCP) |Siemens 3T) ) ™ 173700/564 | 32-channel|  0.8x0.8x0.8 6 GF3M) 0
. . . Tlw 7.6/2.9 0.9x0.9x0.8
Testing Stanford University | GE (3T) Tow 2502/91 4 10X1.0x0.8 5 (3F/2M) 0
. . . Tlw 2400/2.2 1.0x1.0x1.0
Emory University |Siemens (3T) Tow 3200/561 L0X1.0<1.0 5 (2F/3M) 0
UNC (MAP) ‘Testing 1: UNC/UMN (BCP) TABLE ”
TR/TE VALUES (IN MS) OF THE ISEG-2019 DATASETS
Training .
/Validation Testing
Sit UNC UNC/UMN Stanford Emory
¢ (MAP) (BCP) University University
Tiw TR 1900 2400 7.6 2400
TE 44 2.2 2.9 2.2
Tow TR 7380 3200 2502 3200
TE 119 564 91.4 561
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Fig. 2. T1wand T2w MR images of infant subjects scanned at 6 months
of age (isointense phase) from four sites with different imaging proto-
cols/scanners, i.e., UNC (MAP), UNC/UMN (BCP), Stanford University,
and Emory University, provided by the iSeg-2019. (a) Intensity images
and the corresponding manual segmentations from each site. From left
to right: T1w MR image, T2w MR image, and manual segmentation.
(b) Average intensity distribution of T1w and T2w images from four sites
marked by different colors. Note that the results are from the 8 top-ranked
methods on all training/validation and testing datasets in the iSeg-2019
challenge.
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densely-connected U-Net [25] to generate an initial segmenta-
tion. The initial segmentations were later followed by manual
correction under the guidance of an experienced neuroradi-
ologist (Dr. Valerie Jewells, UNC-Chapel Hill). Details of
the manual protocol are available in [26]. To maximally
alleviate the potential bias from the automatic segmentations,
we have spent considerable effort (2045 hours) on the man-
ual correction for each subject, with 200,000£10,500 voxels
(25%=1.3% of total brain volume) corrected. To validate the
quality of the manual segmentations, WM/GM scale analysis
for total 39 subjects is listed in Appendix!' Table X, based on
a universal scaling law between WM and GM of the cerebral
cortex [27], i.e.,

(1.23 £ 0.01) log;g GV—log,g WV ~ 1.47 +0.04

1Appendix Tables I-XI: http://iseg2019.web.unc.edu/wp-content/uploads/
sites/17381/2021/01/Appendix.pdf.

where WV and GV are the volumes of WM and GM, respec-
tively. We find that WM/GM scales from 38 out of 39 subjects
are exactly within or highly close to the range [1.43, 1.51],
indicating a high quality of manual segmentations. Although
we have tried our best, the manual delineation from post-
mortem MRIs, providing a golden standard for tissue segmen-
tation, is highly worth investigating.

As shown in Fig. 2(a), brain MRIs were manually seg-
mented into WM, GM, and CSF, where myelinated and
unmyelinated WM is marked blue, cortical and subcortical
GM is marked green, and extracerebral/intraventricular CSF is
marked red. Finally, we provided 10 infant subjects for train-
ing, 13 infant subjects for validation, and 16 infant subjects
from three different sites for testing, as detailed in Table I.
Note that the manual segmentations of training subjects were
provided, together with the Tlw and T2w images. While
manual segmentations of validation/testing subjects are not
provided to the participants. The segmentation results for the
validation/testing dataset can be submitted maximally 3 times
for evaluation and only the latest/best results were recorded.

A total of 30 teams successfully submitted their results to
the iSeg-2019 before the official deadline. We describe all
participating teams with affiliations and key features used in
their methods in Appendix Table I. Furthermore, we summa-
rize the performance of all methods in Appendix Table II
and find that one out of 29 methods did not utilize a deep
learning technique. In the 28 methods using convolutional
neural networks, 22 methods adopted the U-Net architecture,
which is a strong baseline for medical image segmentation.
It should be noted that, to alleviate the site differences, vari-
ous domain adaptation strategies are employed in top-ranked
methods, such as random intensity adjustment in QLI11111
and xflz, and global feature alignment in SmartDSP. More
details are illustrated in the following description and are

METHODS AND IMPLEMENTATIONS
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TABLE Il
COMPARISONS OF THE EIGHT TOP-RANKED METHODS IN THE ISEG-2019 CHALLENGE
How to deal .
TEAM Architecture Tool with site Key highlight Augmentation Training Loss ZD/?D Patch Stze
. (training/testing)
differences?
Self-attention . . .
QLI111111 and multi-scale TZI:)SOF a?te;:;i?;lt Atteritlfr(l)nltril?:ccizmsm No Cross-entropy 32 X3312)X 32)
dilated 3D UNet W Ju u
Training data . .
. . R Dimension
Attention-guided augmentation, . .
. Tensor- Full resolution transformation, 3D
Tao_SMU Full-resolution contrast and . . Cross-entropy
- flow . + attention mechanism contrast and (32x32%32)
Network lightness lichtness adiustin
adjustment & J &
Random rotation,
. . Histogram Automate designing of scaling, mirroring, - 3D
FightAutism 3D UNet Pytorch matching segmentation pipeline and gamma Cross-entropy (112x128x128)
transformation.
Intensity augmentation Intensity
v Intensity-augmented Tensor- Intensity for ada };a " (‘;gn of multi- augmentation, Cross-entro 3D
vz 3D UNet flow adjustment Pt v gaussian nosie and 124 (64x64%64)
site data flip
Adversarial learning Cross-cntropy. dice
SmartDSP Adversarial learning Pyiorch Global feature + automate designing R loss and ad \f; }:‘;arial 3D
3D UNet y alignment of segmentation loss (112x128x128)
pipeline
Entropy
Minimization Distribution Adversarial entropy Cross-entropy 3D
Cu_SirT 3D densely Pytorch alignment minimization strategy B and adversarial loss (64x64%64)
connected network
tun Cross-linked Pytorch R Cross link + channel R Cross-entro 3D
g FC-DenseNet Y attention Py (64x64%64)
Dense residual 3D Dense block Cross-entropy 3D
RB Unet Pytorch } + residual connection } and dice loss (64x64x64)
further concluded in Table III. According to the performances 5 5 T D
. . . . . it )
of different methods, the domain adaptation is helpful in — i e
dealing with site differences. In this section, we will introduce Rt | e | B —l "f“} e
the metric of selecting the 8 top-ranked methods and further s 000 s e g
describe these 8 top-ranked methods according to their ranking OcPBlock RessDecony o e
order, with the corresponding source codes listed in Appendix ocplack | Atendons = e
Table X. I | !

Metric of selecting 8 top-ranked methods: In the iSeg-
2019 challenge, we adopted DICE, 95th-percentile Hausdorff
distance (HD95), and average surface distance (ASD) [1] to
evaluate the performance of participating methods. For each
metric, we first rank the methods in terms of CSF, GM and
WM segmentations, respectively. Then, we set the weights for
each tissue type according to its normalized volume with the
total brain volume and calculate the overall score for each
method:

Score
= CSF/TV (rankcsp-picg + rankcsp—Hp9s + rankcsr—Asp)
+ GM/TV (rankGm-DpIcE +TrankGm—Hpy5 +rankGm—Asp)
+WM/TV (rankwwm-picg +rankwm—Hpos +rankwm-—Asp)

where the total brain volume TV is equal to the volumes of
CSF + GM + WM, and rankcsF,Gm, WM} —(DICE,HDY5,ASD} 1S
the rank of different tissue types in terms of DICE, HD95,
and ASD. Finally, we select 8 top-ranked methods according
to their overall scores, as listed in Appendix Table XI.

A. QL111111: Northeastern University, China

Lei et al. propose a novel method based on a 3D U-Net
combined with an attention mechanism [28]. To deal with the
site differences between training images and testing images,
they set random contrast to 4.64~4.66 for Tlw images,
and 1.34~1.36 for T2w images. They further apply gamma

Dila-Block Attention-Block

BN RELU

onv Conv
Conv3 conv3 Conv3 Conv1l
Dilation rate=1 Dilation rate=2 Dilation rate=4 Dilation rate=1
(X

RELU RELU RELU RELU

softma]

e [DHW)«(DHW)
Channel Attention Module Spatial Attention Module

> Permute —> Reshape —> Convixixl

Fig. 3. Team QL111117: the structure of 3D U-Net based on attention
mechanism.

‘concatation

correction for T2w images. Then both T1lw and T2w images
are standardized and cropped to 32 x 32 x 32 patches as input
to the network, as presented in Fig. 3. The residual-network-
based structure used in the downsampling path consists of
three dilated convolution pyramid (DCP) blocks. The left
side of the DCP block includes a 1 x 1 x 1 convolutional
layer, and the right side contains a dila-block module, an
activated convolutional layer with a convolution kernel size
of 3 x 3 x 3 and a stride of 2. This dila-block consists of four
dilated convolutions and each dilated convolution includes a
pre-activation layer, which is concatenated and passed to the
next stage. In the upsampling path, self-attention is utilized
to capture long-range dependencies, that is, to aggregate
the information of feature maps. The contributions of their
work can be summarized as follows: (1) They utilize the
convolutions with different dilation rates to effectively capture
multi-scale information. (2) An attention method is proposed
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Fig. 4. Team Tao_SMU: the proposed attention-guided full-resolution
network architecture.

to effectively encode the wider context information and mine
the interdependencies between channel maps.

Leave-one-out cross-validation is wused for training/
validation. During testing, 10 leave-one-out cross-trained mod-
els are applied, and a majority voting is performed to get the
final segmentation. The optimization of network parameters is
performed via Adam optimizer. Learning rate is initialized as
3.3e-3 and weight decay is set as 2e-6. Their method is imple-
mented in Python using TensorFlow framework. Experiments
are performed on a computational server with one NVIDIA
1080Ti with 11GB of RAM memory. It takes about 3 hours
for training and 2 minutes for testing each subject.

B. Tao_SMU: Southern Medical University, China

Zhong et al. propose an attention-guided full-resolution
network for segmentation of 6-month infant brain MRIs, which
is extended from the full-resolution residual network [29] and
attention mechanism [30]. The network consists of a 3D two-
stream full-resolution structure and two types of 3D attention
modules, including Dual Self-Attention Module and Dual
Pooling-Attention Module. First, to address spatial information
loss, a 3D-based full-resolution architecture is constructed to
preserve high-resolution information by keeping a separate
high-resolution processing stream. Second, this architecture
is combined with an attention mechanism to capture global
relationship and generate more discriminative feature repre-
sentations through spatial and channel axes. To deal with
large differences between training images and testing images
from multiple sites, they augment the training data with two
strategies. First, they transform each subject from different
dimensions, i.e., transpose each subject by swapping 3 axes
in different combination, to generate 5 new subjects, thus
providing more features from different views. Second, they
randomly adjust the contrast and lightness for each training
subject using the parameter £20%.

The proposed architecture is detailed in Fig. 4. The two-
stream structure combines multi-scale context information
using two processing streams. The resolution stream carries
information at full resolution for precise segmentation of
boundaries. The semantic stream acquires high-level features
for class identification. In this model, stride size is set as 2 or 4
to achieve magnification/reduction of feature maps 2 or 4
times. Except for the last convolutional layer for classification,
all convolution and deconvolution sizes are set as 3 x 3 x 3.
During the entire process, exchanging feature information
between the two streams execute repeated multi-scale fusion.

Meanwhile, two types of attention mechanism are used to
improve model feature extraction capabilities. In the bottom
block, the fusion features pass through Dual Self-Attention
Module to obtain attention-guided features grabbing the global
dependencies. In the block of the upsampling and down-
sampling processes, after passing through the convolution or
deconvolution layer to downsample or upsample, the fused
features are processed by Dual Pooling-Attention Module to
obtain attention-guided features. The motivation for this allo-
cation comes from the different computational costs required
by the two attention mechanisms. Dual Pooling-Attention
Module is lighter, less expensive, and easier to implant into
every part of the model, whereas Dual Self-Attention Module
requires more computing resources, but provides a stronger
ability to capture global dependencies. Both attention mod-
ules include spatial-based and channel-based parts, which can
selectively aggregate contexts based on spatial attention maps,
and at the same time emphasize class-dependent feature maps,
helping to enhance the channel distinguishability of original
features. Finally, a classifier with 1 x 1 x 1 convolution is used
to classify the feature maps into target classes.

The training input of the network is 32 x 32 x 32 x 2 patches
of T1w and T2w images. Both of them are normalized to zero
mean and unit variance. The network is trained with Adam
optimizer on the cross-entropy loss, using minibatches of 4.
During prediction, the step size is set as 4. It takes about
48 hours for training and 12 minutes for segmenting each
subject on a TitanX Pascal GPU and Tensorflow framework.

C. FightAutism: Nanjing University of Science and
Technology, China

To deal with large differences between training images and
testing images from multiple sites, Jun et al. employ histogram
matching to alleviate the intensity variance from multiple sites.
Specifically, the intensity distributions of all testing subjects
are adjusted to align one randomly selected subject from the
validation dataset.

The employed architecture is a 3D U-Net [31] which con-
sists of one downsampling path and one upsampling path. Each
path includes 5 convolution blocks and each block comprises
of 3 x3 x 3 convolution layer, instance normalization layer and
leaky rectified linear unit. Long skip connections are also used
in the same resolution between downsampling and upsampling
paths.

Both Tlw and T2w images are used to train the U-Net.
The pre-processing includes foreground (non-zero regions)
cropping and Z-Score normalization. All 10 training subjects
are used for training. Data augmentation includes random
rotation, scaling, mirroring, and gamma transformation. The
optimizer is Adam with an initial learning rate of 3e-4. During
testing, test time augmentation is employed by mirroring
along all axes. The implementation is based on PyTorch and
nnU-Net [32].

D. Xflz: Children’s National Medical Center, USA

Feng et al. propose an optimized 3D U-Net with tissue-
dependent intensity augmentation for segmentation of 6-month
infant brain MRIs. To deal with the site differences, they use
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a tissue-dependent intensity augmentation method to simulate
the variations in contrast. To emulate the inconsistent of
contrast, the intensity of each tissue (i.e., WM, GM, and CSF)
is multiplied by different factors during training.

The network structure is based on a 3D U-Net. The encod-
ing path includes three blocks with each block containing two
3x3x3 convolution layers and one 3D max-pooling layer. Two
additional convolution layers are added at the bottom. Three
decoding blocks are used with long range connection from the
corresponding encoding block. Parametric rectifier (PReLU) is
used instead of conventional rectifier (ReLU). Compared with
the original U-Net for 2D images, the number of features is
increased to capture more 3D information, yielding a wider
network. As the input of the network, Tlw and T2w images
are concatenated; the output is the probabilistic maps of WM,
GM, CSF, and background.

During each iteration of training, after reading the original
Tlw and T2w images and the label map, the intensities
at each region are multiplied by different factors randomly
sampled from 0.9 to 1.1 using a uniform distribution to
simulate the effect of different imaging protocols. Randomly
sampled Gaussian noise with different standard deviations is
then added to the resulting T1w and T2w images, respectively.
Furthermore, to simulate the symmetry of the left and right
brain hemispheres, the images are randomly flipped. A patch
of 64 x 64 x 64 x 2 is randomly extracted from the original
images and fed to the network. The model is trained on the
provided data for 4000 epochs and the total time was about
7.5 hours on an NVIDIA Titan Xp GPU. During deployment,
a sliding window approach is used with a stride of 16 and
for each voxel, the final probability is obtained by averaging
all outputs from overlapping patches. No post-processing is
performed. The deployment time is about 1 minute per case.

Although the method achieves good performance in the
validation dataset, the performance declines on the multi-site
testing dataset, indicating that the augmentation method is not
sufficient to fully emulate the imaging differences. As the
imaging parameters including TR and TE are available, they
also try to use a more complex model based on MR physics to
simulate the images using different sets of protocols; however,
as the MR sequence is very complicated, only using TR, TE,
Tlw and T2w information and a simple signal decay model
fails to yield realistic images. For simplicity and robustness,
they just randomly scale the regional intensities differently.

E. SmartDSP: Xiamen University and The Chinese
University of Hong Kong, China

Ma et al. propose a framework with adversarial learning
of unsupervised cross-domain global feature alignment based
on nnU-Net [32]. The nnU-Net is employed [32] as the
backbone, and the architecture of Ada-nnUNet model is shown
in Fig. 5. Inspired by [33] and [34], the network utilizes
a feature-level domain discriminator at the bottleneck layer
of nnU-Net, for aligning the distributions of target features
and the source features in a compact space. By assuming the
training dataset as source domain, and the unlabeled testing
dataset as target domain, they formulate the problem as an

128
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Fig. 5. Team SmartDSP: the proposed Ada-nnUnet network.

unsupervised domain adaptation task. Specifically, the feature-
level discriminator block consists of two 3 x 3 convolutional
layers and one 1 x 1 convolutional layer. Then, the feature
maps are forwarded to a global average pooling layer. This
domain discriminator is trained to predict the domain of input
features in a highly abstracted feature space, by practically
setting the domain label as one for the source domain and
zero for the target domain. By denoting Fy as the feature
extraction downsampling layers before the bottleneck layer,
Uy as the upsampling layers of the segmenter, and D, as the
feature-level domain discriminator, the overall objective of the
network is:

max min Lyqsk (F,g, U¢) + Lady (Fg, DW)

D, Fyp,Uy
where L;qsr is the task loss which is the sum of dice loss
and cross-entropy loss. For the loss of feature-level domain
discriminator, they expect the classifier to alleviate the imbal-
ance of alignment difficulties across different samples, they
follow [34] and apply the focal loss for L,4, as:

Eadu
1 Ny

2 (o ONERCAUS))

5 2y (P (70 (x1))) 10z (1= 2y (5 (x)))

where N, denotes the number of source examples and N,
denotes the number of target examples, and each training
sample drawn from source domain and target domain is
represented by x! and x/, respectively. The y adjusts the
weight on hard-to-classify examples and was empirically set
as 5.0 in the network. In each training batch, source image
x! is also forwarded to minimize the segmentation network
for Liask.

The network is implemented by using the PyTorch library,
with Adam optimizer. The initial learning rate is set as 3e—4
and the weight decay regularizer is set as 3e—5. The inputs of
the network contain T1w and T2w MR images without extra
training dataset. In the training stage, patches with a size of
112 x 128 x 128 are randomly extracted from the volumes and
input to the network. The training procedure takes around two
days on a GPU of NVIDIA Titan Xp with 12 GB memory
and it takes around 10 seconds to process one subject during
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Fig. 6. Team CU_SIAT : the architecture of entropy minimization network
(EMNet). The segmentation network is based on 3D densely connected
network with IBN layer. An adversarial entropy minimization strategy is
used to minimize the self-information (i.e., entropy map) H(P) distribution
gap between source and target domains.

the testing phase. The potential limitation of Ada-nnUNet is
that the feature-level alignment is imposed only in the coarse
feature space. In this regard, some detailed information would
have to be neglected during adversarial distribution alignment,
which may impede segmentation performance.

F. CU_SIAT: The Chinese University of Hong Kong and
Shenzhen Institutes of Advanced Technology, China

To deal with the large differences between training images
and testing images from multiple sites, Yu et al. adopt an
Entropy Minimization Network (EMNet) to conduct unsuper-
vised domain adaptation to align distributions between training
and testing datasets.

As shown in Fig. 6, the proposed framework contains two
main components: segmentation network and discriminator
network. For the segmentation part, they employ the 3D
densely connected network [35] to predict the brain structures
by taking the Tlw and T2w images as inputs. To enhance
the generalization capability of the network over different site
data, they carefully integrate Instance Normalization (IN) and
BN as building blocks of the segmentation network [36]. The
so-called “IBN” layer design can improve the network per-
formance across multiple site data. Moreover, a discriminator
network is adopted to align the distributions between training
and testing datasets by adversarial entropy minimization [37].
In the problem setting, the training dataset is regarded as a
source domain and the testing dataset is treated as a target
domain. They firstly compute the entropy maps of segmenta-
tion predictions for the source and target domain, respectively.
These entropy maps are fed into the discriminator network to
produce domain classification outputs. The whole framework
is trained with adversarial learning: the discriminator network
is trained to distinguish the inputs from the source or target
domain, while the segmentation network is trained to generate
similar predictions for the source and target domain data to
fool the discriminator network. Specifically, the optimization
objective for the segmentation network can be written as:

Z Lseg (x5, ys) + j«adu Z LD Xt
Xs

min —
Os |Xs

and the objective of discriminator network is

> Lp(I.1) —i—VZLD (I, 0)
Xs

min
6D |xsl

Fig.7. Team trung: the proposed cross-linked FC-DenseNet architecture
for volumetric segmentation.

where 05 and fp denote parameters of segmentation and
discriminator network, respectively. y; and y; represent the set
of source and target examples, I, and I,, denote entropy maps
of corresponding images. The Lge(xs, ys) and Lp(ly,, 1)
are cross-entropy losses and adversarial loss to train the
segmentation network, and 4,4, is used to balance the weights
of the two losses.

The segmentation and discriminator network are all trained
with Adam optimizer with a mini-batch size of 4. The learning
rate is initially set as 2e-4 and decreased by a factor of § = 0.1
every 10000 iterators. They train 35000 iterations. The 4,4,
is set as 0.001. They use 10 labeled training subjects and 16
unlabeled testing subjects to train the whole framework. Due
to the limited GPU memory, sub-volume of size 64 x 64 x 64
is used as network input. In the testing phase, they employ
the sliding window strategy to generate the whole probability
map of each test volume. Note that the discriminator network
is abandoned during the testing phase. Generally, it takes about
24 hours to train the model and about § seconds to test one
object on a GeForce RTX 2080Ti GPU with PyTorch library.

G. Trung: Media System Laboratory, Sungkyunkwan
University, South Korea

Trung et al. introduce a segmentation method for 6-month
infant brain MRIs, called Cross-linked FC-DenseNet (cross-
linked fully convolution-DenseNet), as shown in Fig. 7. First,
following each Dense block, an end-to-end concurrent spatial
and channel squeeze & excitation (scSE) is added [38], which
allows the model to explore the interdependency among chan-
nels. Second, 3D FC-DenseNet is combined with the cross-
links (such as downsampling links) [39] to learn more features
from the contracting process.

The network consists of two paths: a contracting path
and an expanding path. The initial part of the network has
three 3 x 3 x 3 convolutions with stride 1 followed a batch
normalization layer (BN) and a ReLU that generates 64 output
feature maps. The contracting path with three dense blocks
with a growth rate of k = 16 [35] is exploited. Each dense
block has four BN-ReLU-Conv(l x 1 x 1)-BN-ReLU-Conv
(3 x 3 x 3). To alleviate the over-fitting after this Conv
(3 x 3 x 3), they use a dropout layer with a dropout rate
of 0.2 [40]. After each dense block, they add scSE block [38]
to explore the interdependencies between the channels. After
scSE block, the transition block includes BN-ReLU-Conv
(1 x 1 x 1)-BN-ReLU followed by a convolution layer of
stride 2 to reduce feature map resolutions while preserving the
spatial information [38]. Meanwhile, for recovering the feature
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Fig. 8. Team RB: the network architecture for U-DenseResNet.

resolution, the expanding path has three convolution layers.
They resize the outputs of the first and last transition block
using max pooling and up-convolution of 2 x 2 x 2 by stride
2 to get an equal resolution with the second transition output
and concatenate all of them as input of the third convolution
layer. Also, the convolution layer uses three different sizes of
feature maps: the output of the initial part, the output of the
first transition block, and the output of the third convolution
layer. Otherwise, they use two different sizes of feature maps
in the first convolution layer: the output of the initial part, and
the output of the second convolution layer. This cross-link
path allows the model to capture multiple contextual features
from the different layers and improves a gradient flow. Finally,
a classifier consisting of ReLU-Conv (1 x 1 x 1) is used to
classify the concatenation feature maps into target classes.

They implement and train the proposed network with an
NVIDIA Titan XP and Pytorch library. First, they randomly
crop sub-volume samples with size 64 x 64 x 64 voxels. The
network is trained with an Adam optimizer and 6000 epochs
with a mini-batch size of 2. The learning rate and weight
decay are set to 0.0002 and 0.0006, respectively. They use
nine subjects for training and one subject for validation from
the iSeg-2019 training dataset. It takes about 40 hours for
training and 6 minutes for testing each subject.

H. RB: Concordia University, Montreal, Canada

Based on the U-Net architecture [31], Basnet ef al. propose a
3D deep convolutional neural network. The difference between
U-Net and the proposed architecture is the utilization of
densely connected convolutional layers as building blocks of
contracting the path and residual skip connections between
contracting and expanding paths in the latter.

Figure 8 shows the proposed network architecture. The con-
tracting path begins with 3 sequential 3 x 3 x 3 convolutional
layers with 32 kernels. The convolutional layer is followed
by BN and a ReLU. Then, 4 downsampling dense blocks
are stacked to halve the feature resolution at each block and
gradually capture the contextual information. Each dense block
has 8 convolution layers and starts with a max-pooling layer as
shown in Fig. 9. In the dense block, every convolutional layer
is preceded by a BN-ReLLU. After each pair of convolutional
layers in the block, a dropout layer with a dropout rate of
0.2 is used to reduce overfitting. The output feature maps
of each pair are concatenated with that of the previous pairs
forming the dense connections. The first convolutional layer
in the pair has 64 kernels of size 1 x 1 x 1 and the second
one has 16 kernels of size 3 x 3 x 3. After every dense block,
a1 x 1 x 1 convolutional layer preceded by BN-ReLU called
the transitional block is used to halve the number of feature
maps. In the expanding path, 4 bilinear upsampling layers

_,cg

a4,

9 Dovasamier £ Cony ) BN-ReLU {5 Dropout (€) Concatenato

Fig. 9. Dense block used in Fig. 8.
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Segmentation results by 8 top-ranked methods on testing
subjects from three sites. From left to right: T1w and T2w images, tissue
segmentation results obtained by 8 top-ranked methods, and manual
segmentations. Zoomed 2D segmentation results and corresponding
3D rendering results are also included, where dotted circles indicate
significant incorrect results.

Fig. 10.

are applied to double the feature resolution and halve the
number of feature maps. A transitional block is used after each
upsampling layer to match the number of feature maps to that
of the transitional blocks in the contracting path of the same
resolution. The corresponding feature maps from contracting
and expanding paths are elementwise summed using skip
connections. At the end of the fourth transitional block of
expanding path, the output features of the third convolutional
layer from the beginning of the contracting path are added and
fed toa 1 x 1 x 1 convolution layer preceded by BN-ReLU
to get probability scores for the four output channels: WM,
GM, CSF, and background. The proposed network has 625,926
learnable parameters with 48 layers.

For training, the Tlw and T2w images are normal-
ized to zero mean and unit variance, and cropped to
64 x 64 x 64 patches as input. The network is trained using
Adam optimizer on a combination of cross-entropy and dice
loss, with minibatches of size 2 for 9600 epochs. The initial
learning rate is set to 2e-4 and decreased by a factor of
0.1 after 5000 epochs. The method is implemented using the
PyTorch library on a computer with Intel Core 15-9600K CPU
@ 3.70GHz, 16GB RAM and an NVIDIA RTX 2070 GPU.
It takes about 16 hours for training and 1 minute for testing
each subject.

IV. RESULTS AND DISCUSSION
In this section, DICE, HD95, and ASD [1] are adopted
to evaluate the performance. First, segmentation results of

different teams are presented in Fig. 10. Evaluations in
terms of the whole brain using DICE, HD95 and ASD
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Fig. 11. Performance of the 8 top-ranked methods on tissue segmenta-
tion, in terms of DICE, HD95 and ASD, using violin-plots. Testing subjects
from three sites are marked as points in three colors.
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Fig. 12.  The performance variation of 8 top-ranked methods across

three testing sites.

are presented in Fig. 11 and Appendix Table III, respec-
tively. For simplification, {WM, GM, CSF}-{DICE, HD95,
ASD} denotes the performance on the soft tissue (WM,
GM and CSF) in terms of a metric (DICE, HD95 and
ASD). Besides evaluations for the whole brain, we also
evaluate the performance based on small regions of inter-
est (ROIs), gyral landmark curves and cortical thickness
in Figs. 13, 14, and 15, Appendix Tables VII and VIII. To
compare the difference of segmentation results among the 8
top-ranked methods, Wilcoxon signed-rank tests are calculated
for statistical analysis in Appendix Table IV, V and VIII. Fur-
thermore, Wilcoxon rank-sum tests are applied to analyze the
statistically significant difference among multiple sites/teams
in Appendix Table VI. In addition, Fig. 12 shows the perfor-
mance variation of 8 top-ranked methods across three testing
datasets. We also compare the 8 top-ranked methods and the
remaining 22 methods on the validation dataset and testing
dataset as shown in Fig. 16.

First, Fig. 10 qualitatively shows the segmentation results
of different teams, and Appendix Table III quantitatively lists
the performances in terms of DICE, HD95 and ASD. Fig. 11
further employs violin-plots to illustrate the performance dis-
tribution of each testing subject. Obviously, from Fig. 10, these
methods consensually perform better on testing subjects from
UNC/UMN (BCP) and Emory University sites, compared with
Stanford University site. Then from the quantitative analysis
in Appendix Table III, 7 out of 8 top-ranked methods achieve
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Fig. 13.  Performance of the 8 top-ranked methods on ROIl-based

evaluation. (a) The DICE values of each method on three testing sites.
For the violin-plots, different color points indicate different sites. (b) The
mean DICE values of each method on three testing sites.

relatively better segmentation results on UNC/UMN (BCP)
site in terms of three metrics, which can be also observed
directly from Fig. 11. In Fig. 11, the light blue, orange,
grey points, denote performance on the testing subjects from
UNC/UMN (BCP), Stanford University, and Emory Univer-
sity, respectively. It can be seen the light blue points are always
at the top location with regard to the DICE metric in the first
column, while the orange points and grey points are located in
the bottom and middle, respectively. As for HDF95 and ASD,
the corresponding point location is opposite as shown in the
second and third columns. We can conclude from the above
analysis, in terms of the whole brain, most methods achieve the
best performance on testing subjects from UNC/UMN (BCP)
and the worst performance on those from Stanford University,
while in between on those from Emory University.

Besides, the violin-plot shapes of QLI11111, FightAutism
and trung teams are wide with few outliers, indicating their rel-
atively stable performance across three testing sites, as shown
in Fig. 11. Furthermore, in order to compare the difference
of segmentation results among the 8 top-ranked methods,
Wilcoxon signed-rank tests are calculated as listed in Appen-
dix Tables IV (on three sites totally) and V (on three sites sepa-
rately) with an all-against-all diagram in terms of three metrics
(i.e., DICE, HD95 and ASD). We can find that only QL111111
has a strongly statistically significant difference in WM-DICE
and WM-ASD compared with other teams as listed in Table IV
(p-value<0.01). However, from the separate evaluation on
three sites reported in Appendix Table V, QLII11111 only
has weak statistical significance on WM-ASD when testing
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Fig. 14.  Two gyral curves (i.e., the superior temporal gyral curve and the postcentral gyral curve) and cortical thickness maps for 8 top-ranked
methods and manual segmentations on three sites respectively. From left to right: manual delineation of two gyral curves, the gyral curves from the
segmentation results of 8 top-ranked methods, cortical thickness maps of manual segmentations, and cortical thickness maps from the segmentation

results of 8 top-ranked methods.
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Fig. 15.  HD95 evaluation of 8 top-ranked methods on the superior
temporal gyral curve and the postcentral gyral curve. (a) Violin-plot
shows HD95 distribution for each testing site. (b) Line chart plots HD95
evaluation among three testing sites for each method.

on UNC/UMN (BCP) site, and on WM-ASD when testing
on Stanford University site (p-value<0.05). As for the HD95
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Fig. 16. The DICE values of 8 top-ranked methods and the remaining
22 methods on the validation dataset and testing dataset, respectively.

metric, there is no statistically significant difference among
these teams for the total or separate evaluation of three sites
in Appendix Tables IV and V respectively (p-value>0.05).
As for the ASD metric, QLI111111 has statistically significant
differences in terms of WM and GM with other teams on three
sites totally as shown in Table IV (p-value<0.01), whereas
from the separate analysis of three sites reported in Table V,
it only has weak statistical significance on GM-ASD when
testing on Emory University site (p-value<0.05).

To better reflect the performance of 8 top-ranked methods
across multiple testing sites, Fig. 12 shows the corresponding
performance variation [E, which is calculated by:

1
E= 3* (IDgcp—Dsul + |Dpcp —Dgul + |Dsy —Deul)

where Dpgcp, Dsy, and Dgy indicate the DICE val-
ues of participating methods on the testing subjects from
UNC/UMN (BCP), Stanford University, and Emory Univer-
sity sites, respectively. For the 8 top-ranked methods of the
iSeg-2019 challenge, the first 6 top-ranked methods adopted
domain adaptation techniques, i.e., QLI11111, Tao_SMU,
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FightAutism, xflz, SmartDSP, and CU_SIAT, while the remain-
ing 2 methods did not adopt domain adaptation techniques,
i.e., trung and RB. We can observe that, the first 6 methods
present smaller performance variations across sites, compared
with the last 2 methods. Besides, to better analyze the dif-
ference between top-ranked methods with or without domain
adaptation, we calculate p-values between them in terms of
DICE for WM (p-value<0.01), GM (p-value <0.05), and CSF
(p-value<0.01), indicating statistically significant difference
between the two groups. The reason is mainly due to the
adoption of domain adaptation in the first 6 methods.

Second, to further compare the performance of the 8 top-
ranked methods in respect of small ROIs, 80 ROIs-based
evaluation is employed in this paper. Following our previous
review article in the iSeg-2017 [1], we use a multi-atlas-
based technique to parcellate each testing subject into 80
ROIs. In particular, two-year-old subjects from www.brain-
development.org are employed as individual atlases, in which
each case consists of a Tlw MR image and the corre-
sponding label image with 80 ROIs (excluding cerebellum
and brainstem). First, each Tlw MR image is segmented
into WM, GM, and CSF tissues by iBEAT V2.0 Cloud
(http://www.ibeat.cloud). Then, based upon the tissue segmen-
tation maps, all anatomical atlases are warped into the space
of each testing subject via ANTs [41]. Finally, each testing
subject is parcellated into 80 ROIs using majority voting. Due
to the large number of ROIs, we only employ the DICE metric
to measure the similarity of automatic segmentations with
the manual segmentation as listed in Appendix Table VII. In
addition, we use the violin-plot in Fig. 13(a) to demonstrate
the distribution of DICE values among three testing sites,
where the different color points in the violin-plot indicate
different testing sites. As shown in Fig. 13(a), the DICE values
from the Stanford University site show a larger distribution
range compared with the other two sites, which indicates
segmentation performance of the methods across different sites
is unstable. Furthermore, to further show the performance on
each site, Fig. 13(b) calculates the mean DICE values of each
site, which is consistent with Figs. 10 and 11, i.e., all of 8 top-
ranked methods perform poorly on the Stanford University site
due to its different imaging protocol/scanner.

Third, in human brains, gyri are part of a system of folds and
ridges in the cerebral cortex that creates a larger surface area,
and changes in the structure of gyri are associated with various
diseases and disorders [42]. Moreover, the cortical thickness
estimation is highly sensitive to segmentation accuracy [25].
Therefore, in this subsection, we further measure the distance
of gyral landmark curves on the cortical surfaces, as well
as the cortical thickness. In detail, for the gyral curves, we
first reconstruct the inner cortical surface using the in-house
cortical surface reconstruction pipeline [43] for each testing
subject. Then, the typical gyri anchor points for the gyri are
manually marked according to the mean curvature pattern of
the reconstructed inner cortical surface with the ParaView
(https://www.paraview.org). Specifically, these anchor points
are selected as the local maximum of the mean curvature
on the corresponding gyri. For two neighboring gyral anchor
points from the same gyri on the surface, we connect them

with the minimal geodesic distance path and the entire gyral
curve can be obtained by connecting all the gyral anchor
points. ParaView is used to visualize the thickness maps based
on the reconstructed inner and outer cortical surfaces.

Figure 14 shows two major gyri (i.e., the superior temporal
gyral curve and the postcentral gyral curve) and the cortical
thickness maps. From top to bottom, there are three subjects
randomly selected from three testing sites respectively. For
example, in the first row, for UNC/UMN (BCP) site, we can
observe that these methods achieve relatively accurate gyral
curves, and the cortical thickness is within a normal range.
However, in the second row, for Stanford University site, the
gyral curves from different methods are quite different with
each other and unsmooth. Consequently, the corresponding
cortical thickness is abnormally either thicker or thinner.

Additionally, HD95 metric is also employed to calculate
the curve distance between the estimated landmarks with the
manually delineated landmarks, as reported in Fig. 15. A large
curve distance indicates poor performance. Based on Wilcoxon
signed-rank test, the p-values are calculated to evaluate the
statistically significant difference between different methods,
as shown in Appendix Table VIII. We find that none of these
8 top-ranked methods has achieved statistically significant
better performance than all other methods (p-value>0.05). For
example, as shown in Fig. 15, all methods consistently perform
poorly on Stanford University site.

Eight top-ranked methods vs. Remaining 22 methods:
We further make comparisons between the 8 top-ranked
methods and the remaining 22 methods on the validation
dataset and testing dataset, as shown in Fig. 16. We can see
that all methods can perform well on the validation dataset,
which is from the same site as the training dataset. However,
for the testing datasets, although all methods show degraded
performance due to the multi-site issue, the 8 top-ranked
methods can achieve the improvement of 8% for WM, 6%
for GM and 2% for CSF in terms of DICE compared with
the remaining methods. The main difference between the 8
top-ranked methods and the remaining 22 methods is that most
8 top-ranked methods employ domain adaptation strategies
to alleviate the site difference. This indicates the domain
adaptation strategy is kind of helpful to alleviate the multi-
site issue. However, it does not fundamentally solve the issue
as none can achieve consistent performance across different
sites, especially on the subjects from Stanford University
(from Figs. 11, 13, and 15).

V. THE ORIGIN OF THE MULTI-SITE ISSUE AND
FUTURE DIRECTIONS

Based on the above evaluation and discussion, regarding
the whole brain, ROISs, gyral curves and cortical thickness, we
can conclude that unfortunately none of these 8 top-ranked
methods can handle the multi-site issue well. The violin-plot
shown in Fig. 17 illustrates the difference between validation
and testing datasets. From Fig. 17, we can find there are
two peaks in the violin-plots with regard to WM and GM,
corresponding to the validation and testing datasets, which
clearly indicates the critical problem caused by the multi-site
issue. Moreover, all methods consistently perform poorly on
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Fig. 17. Average performance of 8 top-ranked methods on the validation
dataset, and testing dataset (from three testing sites) based on median
DICE for WM, GM, and CSF.

Stanford University site, as median DICE values on Stanford
University site are always at the bottom of each violin-plot. In
addition, the Wilcoxon signed-rank tests among the validation
dataset and three testing sites reported in Appendix Table VI
also indicate that there is a statistically significant difference
for GM on Stanford University site (p-value <0.05), compared
with other testing sites. In the following, we will explore the
origin of the multi-site issue, and why the performance on
Stanford University site is always poor.

The multi-site issue is mainly caused by the “gap” between
the training subjects and testing subjects. Many complicated
factors could contribute to the “gap”, such as magnetic field,
head coil, and TR/TE values. In the iSeg-2019 challenge, total
39 subjects of four sites were all acquired using 32-channel
head coil and 3T scanners, therefore these two factors would
less affect the difference of intensity distribution among the
sites than the parameters of TR/TE, as listed in Table II. More
specifically, the long TR minimizes T1w effects and short TE
minimizes T2w effects [44], [45]. For example, the intensity
I of an image can be estimated by

I=K-[H] (1= TRITY). ~TE/T2

where K is a scaling factor and [ H] is the spin (proton) density
[44], [45]. When TE is made short compared to T2, the ratio
TE/T2 — 0, thus the T2-weighted term e~ T E/T2 570
1. In other words, T2 effects largely disappear. It can be
confirmed from Table II that for the Tlw images, TE values
across all sites (i.e., 4.4ms, 2.2ms, 2.9ms, 2.2ms) are con-
sistently short. Similarly, when TR is made long compared
to T1, the ratio TR/T1 — oo, thus the T1-weighted term
e TR/T1 =00 5 (). That is, T1 effects largely disappear.
It can be confirmed from Table II that for the T2w images,
TR values across all sites (i.e., 7380ms, 3200ms, 2502ms,
3200ms) are consistently long. Based on the above analysis,
we could infer that the Tlw (T2w) image is mainly affected
by the parameter TR (TE). Therefore, in the following, we
will mainly focus on TR values for Tlw images and TE
values for T2w images. From Table II, we can see that for
the T1lw images, the TR value of Stanford University site is
significantly different from that of UNC (MAP), UNC/UMN
(BCP), and Emory University sites, which is further confirmed
from Fig. 2(a) that the Tlw data distribution of Stanford
University site (orange color) is different from other sites.

For the T2w images, the UNC (MAP) and Stanford Univer-
sity sites share similar TE values, while UNC/UMN (BCP)
and Emory University sites share another similar TE values.
Accordingly, Fig. 2(b) also indicates that the UNC (MAP)
and Stanford University sites share similar data distributions,
while UNC/UMN (BCP) and Emory University sites share
another similar data distribution. Overall, the Stanford Uni-
versity site exhibits different distribution in comparison of
other sites, especially for the T1w images. The above analysis
generally explains why most methods perform poorly on the
testing subjects from Stanford University site. Based on our
discussion on the origin of the multi-site issue in terms of
imaging parameters, it might be worth investigating to map
the images from the testing site to the space of training images
based on MR imaging physics.

First, although none of the teams can perform consis-
tently across different sites, these teams with domain adap-
tation did achieve much better performance than these teams
without domain adaptation (Figs. 12 and 16, and Appendix
Tables II and XI), indicating that domain adaptation is a
possible way to alleviate the multi-site issue. For exam-
ple, QL111111 mimicked different intensity distributions by
adjusting image contrast, to deal with the multi-site issue.
xflz applied a tissue-dependent intensity augmentation method
to simulate the variations in contrast. In order to decrease
the distribution difference of multi-sites, CU_SIAT adopted
EMNet to align distributions between training and testing
datasets by using a discriminator network, and SmartDSP
proposed Ada-nnUNet by utilizing a feature-level domain
discriminator at the bottleneck layer of nnU-Net. Based on
our discussion on the origin of the multi-site issue in terms
of imaging parameters, it might be worth investigating to map
the images from the testing site to the space of training images
based on MR imaging physics.

Second, the prior knowledge of human brain, which is
site-independent/scanner-independent, could be employed to
guide the tissue segmentation. For example, cortical thickness,
defined as the distance between the outer cortical surface
(i.e., CSF and GM boundary) and inner cortical surface (i.e.,
GM and WM boundary), is within a certain range [25], [43].
Considering that CSF is relatively easier to be distinguished
[25], [26], we could first identify the CSF from infant brain
images. Then, based on the CSF segmentation and cortical
thickness, we can estimate the outer cortical surface, and use
it as guidance to locate the inner cortical surface. Our previous
works have demonstrated the effectiveness of using the prior
in helping the tissue segmentation [25], [26]. However, most
of the participating teams only directly apply existing neural
networks (e.g., U-Nets) to the multi-site subjects, without
considering any site-independent/scanner-independent prior

knowledge.
Third, the key highlights and implementation details of the
8 top-ranked methods are listed in Table III. For example,

all methods randomly select 3D patches during the training
stage, which could be improved by selecting more patches
from the error-prone regions. As shown in Fig. 18, the main
error regions exist in cortical regions, such as straight gyrus
and lingual gyrus, therefore, more training patches from these

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 04,2022 at 21:36:06 UTC from IEEE Xplore. Restrictions apply.



SUN et al.: MULTI-SITE INFANT BRAIN SEGMENTATION ALGORITHMS: THE iSEG-2019 CHALLENGE

1375

QLI

TAO_SMU

FightAutism

UNC/UMN
(BCP)

Fig. 18. The error map of all 8 top-ranked methods on testing subjects
from three sites, i.e., UNC/UMN (BCP), Stanford University and Emory
University. Color baris from 0 to 1, with high values indicating large errors.

error-prone regions may improve the segmentation perfor-
mance. In addition, although training labels are always limited,
we could employ a semi-supervised learning strategy or use
existing methods to generate auxiliary labels [46] from the
unlabeled testing subjects for better training.

Finally, we would like to indicate limitations for the iSeg-
2019. First, due to word count limitations, only 8 top-ranked
methods were reviewed in this paper, but some other teams
demonstrate useful strategies. For example, WorldSeg adopted
a contour regression block to cope with the blurry boundary
problem. SISE used 3D CycleGAN for domain adaptation
between different sites. SJTU-IMR computed distance maps
acquired by 3D U-Net to model the spatial context informa-
tion, which can be viewed as one channel of FCN input to
get the final segmentation. MASI applied the pertained model
based on adult SLANT on the testing subjects. Second, the
number of subjects is limited, e.g., only 5 or 6 subjects from
each testing site, which may not well represent the multi-
site issue. Third, only Siemens and GE scanners are included
in this challenge. Fourth, 3T magnetic field adopted in the
iSeg-2019 challenge is widely used in infant brain scanning,
but it is also worthwhile to include 1.5T imaging data in
future challenge. Fifth, the inter-rater variability is helpful to
know the upper bound of the automated segmentation results;
however, due to the huge amount of annotation work, in the
iSeg-2019 challenge, the manual segmentation was performed
by only one experienced expert, which is the biggest limita-
tion of the challenge. We are going to solve this issue by
employing multi-experts in the coming challenge. For our
planned challenge, we will include more sites with various
scanners/models, more testing subjects and employ multi-
experts to further ensure the quality of manual annotations
and measure the upper bound accuracy for the automated
segmentation results.

VI. CONCLUSION

In this paper, we reviewed and summarized 30 automatic
infant brain segmentation methods participated in the iSeg-
2019 involving multi-site imaging data. We elaborated on
the details of 8 top-ranked methods, including the pipeline,
implementation, experimental results, and evaluations. We also
discussed their limitations and possible future directions. In
particular, we draw the following major conclusions:

1. The multi-site issue that learning-based models often
perform poorly on testing subjects acquired with differ-
ent imaging protocols/scanners as the training subjects,
hinders the popularity and practicability of learning-
based methods.

2. Although most participating methods employed
advanced deep learning techniques, none of them can
achieve consistent performance across different sites
with different imaging protocols/scanners.

3. The multi-site issue is mainly caused by the different
imaging protocols/scanners. It might be worth investi-
gating to harmonize images from different sites based
on MR imaging physics.

4. Domain adaptation is kind of helpful to alleviate the
multi-site issue but does not fundamentally solve the
issue.

5. It might be worth exploring the site-independent
anatomy prior information to alleviate the multi-site
issue.

The multi-site issue is still an open question and the iSeg-
2019 website is always open. Although there are still some
limitations in the iSeg-2019 challenge, we hope it may serve
as a start point and attract researchers’ attention, as well as
promote further methodological development for addressing
the multi-site issue.
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